

Hydrobiological Monitoring

Public Participation as a tool to optimize the system of Environmental monitoring on the example of the lake Son-Kul, 14-17.08.2017

Nishaeva Sofiia

UEF // University of Eastern Finland

Introduction

- Water quality assessment by the flora and fauna of water bodies.
- An essential part of integrated water monitoring.
- Allows to detect impact preceding the time of water sampling.
- Allows to assess the level and origin of disorders in aquatic ecosystems, the consequences of pollution.
- Aquatic communities indicate the average longterm composition of water.
- In European Union, USA, Australia the biological evaluation is a government obligation.

Bioindication

- Bioindicators:
- ▶phyto-, zooplankton;
- ▶ benthos;
- ≻fishes;

≻macrophytes.

- Stressed aquatic system often shows:
- ≻a reduction on taxon richness,
- predominance of pollution-tolerant taxa
- change in number of individuals within a taxon

Phytoplankton

- Bacteria, algae, fungi
- Primary production of water bodies
- Depths of sampling: 0-2, 0-4 m(if water is clean)
- Preservation with 4% formalin or Lugol liquid, if needed
- Species, biomass, chlorophyll-a measurements
- Rapid reproduction of blue-green algae induces harmful "bloom"

Plankton net

Zooplankton

- Protozoa, Rotifers, Cladocera, Copepoda, Ostracoda
- Eat plankton and each other
- Feed for fishes and other invertebrates
- Sampling from water column with plankton net or Limnos sampler Plan
- Sampling place and time depend of the aims of research
- Some rotifers indicate eutrophication

Zooplankton

Brachionus calyciflorus

Rotatoria

Daphnia magna

Benthos

- Insects larvae, worms, mollusks, rotifers, etc
- Ubiquitous and abundant
- Life span is more than 1 year
- Accumulate pollution and transfer it through the food chain
- Reflect long-term changes in water environment
- Easy to identify

Benthos

✓ Sampling 2 times a year: spring, autumn

✓ Sampler – scrapers, bottom-grab

✓ Easy to collect

- ✓ Insect larvae are mainly collected, amount and biomass depend on the season
- ✓ Quality and quantity

measurements

✓ Passivirta method

Bottom animal scoring by the wet weight of animals

Lauri Paasivirta

Oligotrofic	0 - 1.6 g / m²
Mesotrofic	1.6 - 6 g / m²
Eutrofic	< 6 g / m²

Mayer Index

Clean water	Organisms of moderate	Polluted water
dwellers, X	tolerance, Y	dwellers, Z
 Stoneflies larvae Mayfly larvae Caddis fly larvae Alderfly larvae Bivalve mollusks 	 Freshwater shrimp Crawfish Dragon fly larvae <i>Tipulidae</i> larvae Mollusks <i>Planorbidae</i> Mollusks <i>Viviparidae</i> 	 Chironomid larvae Leech Asellus aquaticus Pond snails Blackfly larvae Oligochaeta

$S=X\bullet 3+Y\bullet 2+Z\bullet 1$

>22 – clean water; 17-21 – oligotrophic; 11-16 – mezotrophic, <11 – eutrophic

Issyk-Kul lake

Phytoplankton:

- 400 species, among them:
- ✓ 68 species of green algae;
- ✓ 64 blue-green species;

blue-green algae causing harmful
 blooms are not present;

- ✓ Maximum growth- spring (May), autumn (Okt-Nov);
- ✓ depth 15-50 m
- ✓ biomass не более 0,2 г/m³

60 species: 34 green algae species; 1 blue-green algae; 56 diatoms species

Issyk-Kul lake

Zooplankton:

- 119 species, among them:
- ✓ 98 rotifers, 13 copepods,

8 cladocerans

- ✓ Copepod Arctodiaptomus
- Salinus composes 97% of zooplankton
- ✓ Inhabit the depth from surface till 100 m
- ✓ Maximum growth Aug-Sept, minimum – Feb-Mar.

Son-Kul lake

- 28 species:
- ✓ 17 rotifers, 5 copepods,
- 6 cladocerans
- ✓ Endemic *Daphnia Sonculensis*
- ✓ Arctodiaptomus bacillifer
- 35- 40 000 species/ м³
- ✓ After acclimatization of whitefish zooplankton reduced up to 2/3

www.deviantart.com

Issyk-Kul lake

Benthos:

- 224 taxa:
- ✓ Charophyte zone(from shoreline up to 40 m depth);
- Chironomids, mollusks, mysids;
- ✓ Abundance reduces with depth

Son-Kul lake

- Dominance of chironomid larvae and mollusks
- Number of freshwater shrimp has decreased after whitefish acclimatization

Lake Issyk-Kul

Fishes:

• 28 species:

✓11 indigenous (chebak, chebachok, marinka, osman, carp, etc.)

 ✓ 17 species have been acclimatized (rainbow trout, pike-perch, whitefish, etc)

Lake Son-Kul

Until 1950 had been fishless
White fish, peled, osman have been stocked in to the lake

Conclusion

- Physic-chemical analysis determines concentrations of pollutants at the moment of water sampling
- Biological assessment shows long-term effects of physicchemical factors on aquatic organisms
- Physical, chemical and biological methods are needed for integrated water quality assessment .

References

- 1. Armon RH, Hänninen O (2015) Environmental Indicators. Springer: 643-650.
- 2. Kustareva LA, Naseka AM (2015) Fish Diversity in Kyrgyzstan. Species Composition, Fisheries and Management Problems. Aquatic Ecosystem Health and Management, 18(2): 149-159.
- 3. Kustareva LA, Lemzina LV (2007) Life in Water Bodies of Kyrgyzstan. Ilim: 37-112.
- 4. Nurminen L (2013) Sampling and biological measurements/ Presentation. UEF.
- 5. Welch EB, Jacoby JM, Lindell T (2004) Pollutants Effects in fresh Water/ Applied Limnology. Spon Press: 95-227.

Thank you!

UNIVERSITY OF EASTERN FINLAND

uef.fi